Covert Images Using Surface Plasmon-Mediated Optical Polarization Conversion
نویسندگان
چکیده
منابع مشابه
Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR)
Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR) imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in hig...
متن کاملPlasmon-mediated magneto-optical transparency
Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magne...
متن کاملMicrowave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes
We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and ...
متن کاملOptical measurement of neural activity using surface plasmon resonance.
We demonstrate that surface plasmon resonance (SPR) is applicable to the optical detection of neural signals. A low-noise SPR sensor was developed as a label- and artifact-free method for the extracellular recording of neural activity. The optical responses obtained from a rat sciatic nerve were highly correlated with simultaneously recorded electrical responses. Additional studies with stimula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Optical Materials
سال: 2018
ISSN: 2195-1071
DOI: 10.1002/adom.201700843